
WebKnox: Web Knowledge Extraction

David Urbansky
School of Computer Science and IT

RMIT University
Victoria 3001 Australia

davidurbansky@googlemail.com

James A. Thom
School of Computer Science and IT

RMIT University
Victoria 3001 Australia

james.thom@rmit.edu.au

Marius Feldmann
Department of Computer Science
University of Technology Dresden

Germany
feldmann@rn.inf.tu-dresden.de

Abstract The paper describes and evaluates a system
for extracting knowledge from the web that uses a do-
main independent fact extraction approach and a self
supervised learning algorithm. Using a trust algorithm,
the precision of the system is improved to over 70%
compared with a baseline of 52%.

Keywords Information Extraction, Web Mining

1 Introduction
Given the vast quantity of repeated information avail-
able on the web, it has become possible to more reliably
extract factual knowledge about many different entities.
Therefore it is useful to have a automatic approach that
finds pages containing facts and extracts the best an-
swers. This paper describes and evaluates a system
WebKnox (Web Knowledge eXtraction) for extracting
knowledge from the web.

WebKnox’s input consists of the following parts:

1. The concepts, e.g. Car or Country.

2. The attributes for each concept. The attributes
determine which facts are searched for each entity
in the concept. E.g. for the Country concept
attributes could be population and capital.

3. The entities for each concept. The entities and
attributes together build the templates that are
filled in the fact extraction process. E.g. for the
Country concept, Australia and Germany are
valid entities.

The following are the main contributions in this
paper. We present a domain independent fact extraction
approach that retrieves web pages with factual
information, analyzes those semi-structured pages,

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

and extracts facts from generic structures and formats
that commonly occur on websites. We introduce a
self supervised learning algorithm that automatically
estimates the precision of the different structures used
to extract the facts. We show how the extraction
precision for numeric values can be increased by cross
validating them with numeric values from other entities
of the same concept. We demonstrate how a trust value
can be assigned to the extracted facts which is used to
rank the extractions and help the end user determine
which facts can be trusted.

2 Background
2.1 Web Information Extraction
This section gives background information about infor-
mation extraction in general and the extraction tasks for
the web in particular.

In contrast to information retrieval (IR), where the
task is to find relevant information for a given query
and to rank the results, information extraction (IE) is
the process of extracting information to a given target
structure such as a template or an ontology. The IE
tasks are defined by an input (e.g. an HTML page) and
an output (e.g. a populated database) [2].

There are several main tasks in information extrac-
tion.

1. Named Entity Recognition (NER) is the task that
identifies entities in a given text. It is the easiest
task, however it is more recognition than extrac-
tion because no new entities are extracted.

2. Coreference Resolution (CO) identifies identity re-
lationships between entities in texts.

3. Entity Extraction (EE) is the task of discovering
new instances of a concept.

4. Fact Value Extraction (FVE) is the task of finding
values for given attributes for a given entity. e.g.



the entity “Australia” and the attribute “popula-
tion” are given and the value for the attribute is
searched.

5. Fact Extraction (FE) is a similar task to FVE but
no attributes are given for the extraction process.

2.1.1 Web Information Sources

The choice of the information extraction technique de-
pends on the format of the source. The world wide web
consists of documents that belong to one of the three
main types of sources: unstructured, semi-structured
and structured.

In web information extraction, semi-structured
sources are mainly HTML files. That is because they
contain lots of unstructured data as texts but use tags to
structure that data for rendering purposes.

Internal Representation Before examining the main
techniques that access and extract from these web
sources it is important to understand that the content
can be represented in two main forms.

1. A hierarchy of nodes represents the source as a tree
of nodes (such as element or text nodes). This rep-
resentation is usually instantiated using the Docu-
ment Object Model (DOM).

2. A tokenized string represents the source as a
parsed string of words, numbers etc. (so called
tokens). This representation is often used for free
text as there is no other structure that can be used
to represent the information.

2.1.2 Information Extraction Techniques

Natural Language Processing (NLP) can be
employed for web information extraction using a set
of techniques that make the natural language more
machine readable. Those techniques are for example
tokenization, sentence splitting, orthomatching
(coreference resolution) and regular expressions.

Wrapper Induction “A program that makes an exist-
ing website look like a database is called a wrapper.”
[3]. Wrappers perform pattern matching to find the
information of interest. The main goal in learning a
wrapper is to find a general description of what the
information that is supposed to be extracted looks like.
Writing a wrapper by hand is labor intense and over the
time more automation has been introduced. Chang et al.
[2] classify these wrapper techniques in four categories
with increasing automation:

1. manually-constructed wrappers. The user writes
a wrapper for every web site he wants to extract
information from which means that he has to
have a profound understanding of programming
languages. That requirement makes it however
impractical for a broad domain approach.

2. supervised wrapper construction. For supervised
learning a wrapper, a human labels information on
a set of HTML pages he wants to have extracted.
These labels are taken as positive examples for
the learning algorithm. Non-labeled data serves
as negative examples. The user does not need any
programming knowledge but needs only to be able
to mark up the content or use a graphical user in-
terface to do that.

3. semi-supervised wrapper construction. Semi-
supervised systems require the user not to give a
whole exact labeled set of web pages but rather
guess extraction patterns on given examples.
The user then has to decide which pattern is the
correct one, thus the extraction process becomes
supervised.

4. unsupervised wrapper construction. The unsuper-
vised approach requires no user interaction. While
former approaches needed a user to specify the
data of interest, the extraction target in supervised
extraction are data rich regions of the website [2].

Wrapper induction techniques are primarily used
for structured or semi-structured sources as many
techniques rely on the DOM tree.

2.1.3 Correctness of Extracted Information

Traditional IE focuses on extracting as much informa-
tion as possible from a small corpus whereas web infor-
mation extraction systems often rely on the redundancy
of web content [6]. That means that the focus of the ex-
traction techniques should be set on the precision as the
recall automatically comes with many mentions of the
entity or fact that is extracted. One major problem with
web information extraction systems is that the quality
of the extractions can vary, i.e. extracted entities may
not really belong to the concept they were assigned to
or facts are wrong.

Simple Scoring For the fact extraction task a simple
scoring, based on the number and quality of sources
can be used to decide which fact extraction is correct
and which is not [7]. The effectiveness of simple scor-
ing relies however on the assumption that correct facts
are extracted more often than incorrect facts which also
depends on the extraction technique and the type of
the fact. Rare facts for example might be extracted
correctly but do not score very high.

Pointwise Mutual Information Etzioni et al. [4] use
patterns as discriminators to ensure the correctness of
an extracted fact or entity. That means they use these
discriminators as queries for web search engines and
calculate pointwise mutual information (PMI) between
the extraction and the discriminator with the hit counts.
If E is an extracted entity and D is the discriminator
phrase, the PMI can be calculated as in the Equation 1.



PMI =
Hits(E + D)

Hits(E)
(1)

2.2 State-of-the-art Systems
KnowItAll [4] is a domain independent, unsuper-
vised system that automatically extracts entities and
facts from the web. KnowItAll is redundancy-based
which means it relies on the assumption that a fact or
entity occurs many times on the web. The system’s
strength is finding new entities for a given class (EE
task). To do that, it uses a set of domain independent
patterns and queries a search engine with that pattern.

The input for KnowItAll is a set of concepts, at-
tributes and relations. The extractor module queries
search engines with extraction patterns and performs a
shallow syntactic analysis. A discriminator is an extrac-
tion pattern with alternative text. The assessor module
queries search engines with discriminators to validate
a particular extraction and ensure the precision of the
system. For that purpose, KnowItAll uses PMI.

KnowItAll is specialized in extracting entities and
has its limitations in extracting facts. It can extract
entity relations found in free text but much information,
especially numbers (e.g. the population of a country) is
given in table structures that are not evaluated by Know-
ItAll. Also the PMI score for validating the extractions
would most likely not work with numeric extractions.

Textrunner [1] goes one step further beyond the ca-
pabilities of KnowItAll, as it does not require any user
input which is more scalable and easier to apply for new
domains. Its only input is the corpus of web pages, and
information is extracted in a single pass. This happens
in three steps for every sentence read: (1) The noun
phrases of the sentence are tagged, (2) nouns that are
not too far away from each other are put into a candidate
tuple set and (3) the tuples are analyzed and classified
as true or false.

GRAZER [7] is a system that corroborates and
learns new facts. The input for GRAZER are seed
facts (attribute-value pairs) for given entities. Entities
and seed facts are automatically generated using
specialized wrappers. For the given entities, relevant
pages are obtained. Relevant pages are those that have
a mention of the entity. On these pages the seed facts
are corroborated and new facts are extracted. The
system searches for mentions of the seed facts on the
relevant pages and adds the source if the fact was found
on the page. The corroboration happens in free text and
in structured HTML as all tags are removed and only
the area around the attribute name is searched for the
mention of the value.

Although GRAZER does not need an ontology
about the knowledge domain as an input it relies on
a set of seeds for entities and facts. These seeds are
obtained in an non generic way by inputting the data
by hand, which is labor intense or by scraping sources
with specialized wrappers. The same facts are extracted
several times and are treated as new facts when they

have a different attribute which is just a synonym, e.g.
“Birthday:17.01.1962” is another fact than “Date of
Birth:17.01.1962”.

3 Design
This section introduces the design of our system for fact
extraction from the web. First, the knowledge to be
extracted is encoded in an ontology, then entities are
given, and then the fact extraction process automati-
cally finds the values for the specified attributes.

3.1 Knowledge Representation
Before the extraction process can start WebKnox needs
to know what concepts, attributes and entities exist.
This knowledge is called prior knowledge. The prior
knowledge for WebKnox is modeled in an ontology
using OWL. Therefore, all concepts and attributes are
defined in the knowledge ontology and the entities and
facts that are extracted are stored in another separate
data ontology.

The purpose for the knowledge ontology is (1) to de-
fine the knowledge represented in the data ontology and
(2) to serve as an input for the extraction process. In the
knowledge ontology every attribute gets an OWL data
type property assigned to it. This determines which type
of value the attribute will have and can be used for (1)
other programs reading the ontology, trying to parse the
data and (2) for the extraction process to know which
values on a source are candidates for the attribute. A
datatype property can have any XSD datatype1 but We-
bKnox only uses the following:

1. String: A string is a sequence of characters, We-
bKnox will however only consider proper nouns
as fact candidates for a string attribute, i.e. only a
sequence of words starting with a capitalized char-
acter or a number are considered to be possible
answers.

2. Boolean: Attributes with a boolean value can
either have true or false as a value. WebKnox
searches boolean values only in tables and looks
for “yes” and “no” occurrences.

3. Decimal, Double, Float, Integer, Int, Long:
These are numeric attributes which are all handled
equally by WebKnox. Every numeric attribute
is handled as a double and only occurrences of
numbers are extracted as fact candidates for the
attribute.

4. Date: An XSD date is a string given in a
standardized UTC format: YYYY-MM-DD.
WebKnox will look for several representation of
dates on web sources and tries to transform these
back to the UTC format.

1http://www.w3.org/TR/xmlschema-2/#d0e11239



5. AnyType: Attributes with values that do not
match any previously mentioned data type can
have the AnyType property. WebKnox takes all
characters around or after the attribute on the web
source into account when determining the fact
candidates. Thus AnyType can be used for strings
that are not proper nouns.

3.2 Fact Extraction
The first process is the retrieving of the source pages
which gets an entity and its attributes as input. The
extraction process then extracts the values for the en-
tity’s attributes from the websites retrieved. The ex-
tracted facts are normalized and eventually the trust in
the extractions is calculated.

3.2.1 Retrieving Fact Pages

Retrieving relevant pages that host the searched facts
is a crucial process that has to be tightly coupled with
the extraction process. As input data the source re-
trieval process gets the names of the entities and at-
tributes that are being searched for. The process then
queries a search engine and outputs the retrieved pages
together with information about which attributes are ex-
pected on the page. This output is fed into the extraction
process. The focus lies on retrieving semi-structured
HTML pages as they are easy to access via generic
search engines as Google2.

To retrieve pages that have the searched facts
present, WebKnox uses two kinds of generic queries.
The first kind is called multi-attribute query, it tries
to find pages relevant to the entity and extract all
searched facts from the retrieved pages (e.g. the query
“Australia”). The second kind is the single-attribute
query and is focused on each single attribute, i.e. it
queries the search engine with attribute specific terms
(e.g. the query “Australia population”).

The retrieved websites are then passed to the fact
extraction process. The fact extraction process also gets
information about the type of the query so that it only
looks for a single attribute on single attribute pages and
tries to find all attributes on general fact pages retrieved
by multi-attribute queries.

3.2.2 Exploiting Structure and Format of Web
Pages

The quality of extracted facts can be increased by using
different extraction structures for different types of fact
appearances. As covered in the background a com-
mon approach for fact extraction is to use the com-
plete website content and simply remove all HTML tags
(as done by the GRAZER system [7]). That however
also removes all advantages that come with the semi-
structured type of HTML documents. WebKnox differs
from current approaches as it takes the extraction struc-
tures, i.e. the different generic formats and structures

2http://www.google.com

into account that are used to represent facts on web
pages.

Definition 1 (Extraction Structure). An extraction
structure is the pattern or format the extracted fact is
represented on a source.

These extraction structures are phrases, tables,
colon patterns and free text.

Phrases are natural language representations
of facts for a specific entity. For example the
phrase “The capital of Australia is Canberra” is
used on a website. The phrase covers the fact
capital:Canberra for the entity Australia. Ideally
the searched value for the attribute appears right
after the “is” in the phrase. WebKnox uses only
two phrases: the ATTRIBUTE of ENTITY is and
ENTITY’s ATTRIBUTE is. These phrases are also
used by the source retrieval process to discover pages
that state these phrases.

Tables are important HTML structures on the web
that are used to represent many facts, which led to
numerous wrapping techniques. Keeping the HTML
structure allows to traverse in the DOM Tree of the
website and find corresponding attribute-value pairs
in tables. Figure 1 shows an example3 of a rendered
HTML table in a) and the DOM representation of that
part in b). That is a very easy example of a table but
also a very common one. By identifying the td-element
with the attribute, the sibling td-element with the value
can be found and only the text inside that element is
extracted.

Figure 1: A table for mobile phone specifications

Colon pattern is the text that is right after a colon
(“:”). Often facts are given in an unstructured way (no
tags) but with the format ATTRIBUTE:VALUE so that
only the text after the colon needs to be extracted. Fig-
ure 2 shows an example4 of this representation, where

3Table from http://gsmarena.com/nokia n95-1716.php
4Data from http://engadget.com/2008/08/30/

msis-wind-u90-to-boast-8-9-inch-display/



a) depicts the HTML rendered version while b) shows
the text as it is seen when the separating tags are re-
moved (replaced with whitespace). If one would try to
extract the processor attribute (PROC), expecting a nu-
meric value and not noticing the format, the 2008 would
be extracted as it is closer to the processor attribute than
the correct value 1.6GHz after the colon. The colon
pattern can therefore help increasing the fact extracting
precision in a very simple manner.

Figure 2: An example for fact representation in a colon
pattern, a) shows the presentation in rendered HTML,
whereas b) shows the data when tags are removed
(replaced with white space)

Free text is the absence of structure (tags) and ad-
ditional format (phrase or colon pattern). Facts can
also appear in long paragraphs of text but as no further
information about the structure and format is given, all
text around the attribute has to be considered as a valid
answer for the attribute’s value. It is assumed that al-
ways the next matching value closest to the attribute is
extracted. WebKnox takes the sentence in which the
attribute appears as the boundary. This way incorrect
information further away is not extracted as well. Using
information found in free text increases the recall and
must be considered, especially for rare facts that do not
appear in tables or other structures and formats.

Some extraction structures are more reliable than
others. It is also necessary to take all possible extraction
types as it increases the recall and some facts can only
be found looking in a certain structure. The trust in the
fact values extracted by a structure must therefore take
the employed extraction structure into account. The
next section describes how the trust in extracted facts
is calculated.

3.2.3 Calculating the Trust in Extractions

Once values for attributes have been extracted, they
need to be ranked in order to determine the value that
is most likely to be the correct one for the attribute. It
is now necessary to find the correct ones by assigning
trust to each extraction.

Definition 2 (Trust). The trust is a non negative num-
ber. The higher the number the more reliable the ex-
tracted value.

The following equations assign trust values and aim
to improve the ranking of the extracted values, i.e. to
put the correct ones on top.

The easiest way to rank the extracted values it
by just counting the number of extractions. The
more often a value has been extracted, the higher the
trust value. Equation 2 shows how the trust value is
calculated in that case, with N being the number of
extractions for the given value, and x being a tuple

consisting of concept, entity, attribute and value,
x =< xconcept, xentity, xattribute, xvalue >. This way
of assigning a trust value is called “Quantity Trust”
from now on.

QuantityTrust(x) = N (2)

The Quantity Trust does not make use of additional
information like where (the source) and how (extrac-
tion technique/structure) the fact was extracted. This
information must be considered when determining the
trust for an extraction.

Determining the Source Trust Some pages that
are retrieved for the extraction process mention the
attribute and its value several times. For example,
suppose a page that is retrieved, when searching for
the entity Nokia N95 and the attribute talk time,
mentions the attribute several times, two times with
the correct value of 6.5 hours but three times with
different values that do not relate to the entity but to
other mobile phones. The source trust can therefore
be reduced whenever there is more than one value for
the searched attribute as shown in Equation 3, where
D is the number of different values found for the given
attribute and source. The source trust can have values
between 0 and 1 with one being highest trust and zero
being no trust.

SourceApplicability(attribute,source) =
1
D

(3)

Determining the Extraction Structure Trust
Extraction structures have different precisions that
must be taken into consideration when calculating the
trust for a fact value. The values determined in the
test set are not representative for all possible concepts
and domains. Since WebKnox aims to be domain
independent, the precisions determined for the test
set cannot be taken as references. WebKnox uses self
supervised machine learning to automatically estimate
the trust for the four extraction structures used. The
trust value for the extraction structures is an estimated
precision, i.e. it is a number between 0 and 1 with one
being highest trust (all extractions were correct) and
zero being no trust (all extractions were incorrect).

For all extraction structures e, information about the
number of extractions N(e), and the number of correct
extractions C(e) is kept. The ExtractionStructureTrust
is then calculated as the ratio of correct extractions to
total extractions (Equation 4):

ExtractionStructureTrust(e) =
C(e)
N(e)

(4)

Initially all extraction structures are initialized with
a trust value of 0.5. The three steps are then as follows:

1. The input for the first step is the extraction result
with an assigned trust. In the first step the high-
est trusted fact is searched throughout all concepts



and attributes. It is then assumed that this fact
is really a correct one, since it has a high trust.
All extraction structures used to extract that very
fact value get credit for a correct extraction, i.e.
, C ′(e) = C(e) + 1 and N ′(e) = N(e) + 1.
Extraction structures that led to wrong fact values
for that attribute, get credit for a wrong extraction,
i.e. N ′(e) = N(e) + 1. In the next iteration that
highly trusted fact is not considered anymore when
looking for the highest trust.

2. In the second step, the trust for the extraction
structures is updated based on the number of
correct and total extractions that have been revised
in the former step, i.e. the extraction structure
trust is recalculated using Equation 4.

3. In the third step, the trust for all extracted val-
ues is recalculated by using the updated trust for
the extraction structures. After this step, the rank-
ing of the extracted values for each attribute might
change. The newly ranked list is then again input
for the first step to repeat the process. The itera-
tion can be stopped when the trust for the different
extraction structures converges. In case the trust
does never converge, the iteration will only stop
after all highest trusted facts have been evaluated
in step one.

Combining Source and Extraction Structure Trust
Taking both, the source trust and the trust in the extrac-
tion structure, into consideration, the trust for an ex-
tracted value can be calculated as shown in Equation 5.
S is the set of sources the given fact has been extracted
from, ExtractionStructureTrust(e) is the trust of the ex-
traction structure e used and SourceApplicability(s) is
the trust for the source s. The trust will therefore be
high, when the value has been extracted in many trust-
worthy sources using numerous highly trusted extrac-
tion structures. This trust formula shall be called “Com-
bined Trust”.

CombinedTrust(x) =∑
s ε S

(
∑
e ε E

ExtractionStructureTrust(e) ∗

SourceApplicability(xattribute, s)) (5)

Normalization Facts can be represented in different
formats which still represent the same thing. For
example dates can be written in many ways, such as
January, 17th 1962 or 17/01/1962. Also many
numeric facts have units. Not taking the unit into
account leads to the extraction of two different facts
where actually only one is mentioned, e.g. 2 inch and
5.08 cm is the same fact. Normalization helps to find
facts from different formats and to cluster them.

Validating Numeric Fact Values across Entities
Another problem with extracted facts is that some

attributes do not have a single absolutely correct
value. The population attribute for example is not
mentioned correctly on any website on the entire
web as it changes almost every second. Instead
there are values that are almost the same and can be
considered correct. Fact values for attributes with
fuzzy values tend to not corroborate well. For example,
the following fact values might have been extracted for
the population attribute for Australia:

300 (3 times)
21000000 (1 time)
21340000 (1 time)
22578420 (1 time)
20452340 (1 time)

The problem here is that the exact same number for the
population is not mentioned on more than one source.
The incorrect extraction 300 however is extracted sev-
eral times and therefore gains higher trust.

To solve that problem, two assumptions are made:

1. The order of magnitude (OOM) for numeric facts
is often the same for entities within the same con-
cept; there are exceptions such as the population
of countries.

2. There are well-known entities where the informa-
tion about the numeric attribute can be extracted
with relatively high trust because they appear on
very many pages.

Both assumptions were supported in our test set for
most of the fact values. A bigger test set with more
entities (and more well-known ones) would most likely
further support that assumption.

To make advantage of the fact that the OOM is often
the same, WebKnox uses a validation process across
all entities for a given attribute. This process is called
“Cross Validation” and is part of the second step in the
self supervised learning loop. It works as follows:

1. For all numeric attributes, an OOM distribution is
constructed.

2. If the highest trusted value from the first step of
the learning loop is a numeric value, the number
is considered to be correct and the OOM of that
number is given credit in the attribute’s OOM dis-
tribution.

3. In the next iteration the trust for the fact values
for the same attribute will be calculated as shown
in Equation 7. The CrossValidationFactor for a
numeric fact value is one plus the support of the
OOM, which is a number between 0 and 1 with 1
being 100% support (all other entities of the con-
cept had values with exactly the same OOM for
that attribute) and zero being 0% support (no other
entity of the same concept had the same OOM for
that attribute).



CrossValidationFactor(x) =
1 + support(blog10(xvalue)c, xconcept) (6)

CrossValidationTrust(x) =
CombinedTrust(x)) ∗ CrossValidationFactor(x) (7)

4 Evaluation
The Test Set contains six different concepts (five en-
tities each) and five data types. In total there are 255
facts to extract.

The entities for each concept were chosen
manually by applying following criteria to gain a more
representative sample for each concept: Notebooks,
Mobile Phones and Cars were chosen from different
manufacturers; small and large Countries were
chosen; Movies were chosen based on popularity; and
only well known Actors were chosen.

For the evaluation, 2420 HTML pages were
retrieved using the REST web service from Yahoo!5.
Each entity was searched for using two multi-attribute
queries and each attribute of an entity resulted in three
single-attribute queries. For each query, only the top
eight retrieved URLs were used for the fact extraction
process. Not all queries led to eight answers from the
search engine, in that case all answers were taken.

The standard measures for comparing extraction
systems are precision and recall. In web information
extraction, the precision measures the ratio of correctly
extracted facts or entities to the total extractions,
and the recall measure determines the ratio of the
performed extractions and the extractions expected.
Additionally, the measure found is used several times.
Found is the ratio of extracted facts (correct or not) to
expected facts. A found value of one means, that for
every attribute at least one value has been extracted. If
not otherwise stated, the measures always relate to the
complete test set of the WebKnox system.

Baseline Basically two different approaches are used
today: (1) wrapper induction and extracting from tables
and (2) treating the website as a long (tokenized) string
by removing the tags. As the developed approach ex-
tracts information not only from tables it is appropriate
to compare it to the latter technique.

The baseline extraction works similar to the tech-
nique from the GRAZER system [7]. All tags are re-
moved from the website, all occurrences of the attribute
are evaluated and the corresponding fact values are ex-
pected before or after the attribute. Only the first 150
characters before and after the attribute are searched
for the matching value to delimit noise. The trust is
calculated only by counting the number of extractions
(Quantity Trust).

5http://developer.yahoo.com/search/

Evaluation of Source Retrieval WebKnox uses a set
of generic queries to retrieve websites from a search
engine that are likely to have a mention of the facts
searched for. When retrieving the top eight results, 95%
of the facts were found. All further evaluations for the
fact extraction rely on the test set that was gained by
taking the top eight results from Yahoo! for all queries.

Evaluation of Extraction Structure Trust Learning
Figure 3 shows the learned trust values for the four
extraction structures after every iteration of the learning
loop. The dashed lines visualize the manually deter-
mined precision values in the test set for each extrac-
tion structure and the solid lines are the automatically
calculated trust values from the learning loop. All trust
values were initialized with 0.5. The graphic shows that
the free text (red) and table (green) extraction struc-
ture do not change very much after the first forty it-
erations. The phrase and the colon pattern extraction
structure however, seem to drop an raise quickly even
after 40 iterations. This behavior is due to the occur-
rences of these structures. The “found” value for these
two structures was lower than for free text and table,
which means that the extraction structure occurs more
rarely and therefore it takes longer to gain a stable trust
value. The loop did not stop before all iterations have
been performed since the trust values did not converge
so far. 172 iterations was the maximum for the test set
with 255 facts since not all facts have been found. After
172 iterations, three of the four extraction structures got
an automatically assigned trust value that is in a 4%
margin to the “correct” precision value for the extrac-
tion structure in the test set. The highest discrepancy
can be seen with phrase that is 5.2% away from the
correct trust value. This again can be explained by the
low occurrence number, only every fourth fact can be
found by the phrase extraction structure. The black line
in Figure 3 depicts the overall precision of WebKnox.
It is shown that the precision does in fact increase as
the extraction structures get trust values closer to their
real precision. Through the learning loop, an overall
precision gain of 7.4% is gained, recall is also affected
positively with an increase of about 7%.

Cross Validation When comparing the extraction
precision for the numeric data type we find that (both
with and without crossvalidation) WebKnox found 143
of the 145 numeric facts in the test set. The learning
loop was performed 172 times in both cases, until no
more iteration was possible. Without cross validation
63.19% of the extracted numeric values were correct.
Using cross validation showed a gain in precision of
almost 7% to 70.13%. The difference between the
baseline and WebKnox for numeric fact values now
increases to over 25% in precision.

Overall Fact Extraction Performance Figure 4
shows the comparison between the baseline and the
fact extraction process of WebKnox for all concepts of
the test set. The evaluated fact extraction process used



Figure 3: Evaluation of the self supervised learning
loop for the extraction structure trust.

Equation 7 (with cross validation) and stopped after
172 iterations to weight the extraction structures and
apply cross validation for numeric facts. The measures
in the figure are pr for precision and re for recall. There
are two bars for each measure and concept, where the
left is the one for the baseline and the darker right
one is the measured value for WebKnox. In five of
the six concepts, WebKnox reaches a higher precision
and recall than the baseline. For the car and notebook
concept it does not perform considerably better than
the baseline. That is because the normalization step
sometimes fails to normalize the numbers correctly.
In the car and notebook domain most of the facts are
numeric facts and several times there is no unit given
with the fact. Overall, the system achieves precision
and recall over 70% compared with the baseline of just
approximately 52%.

5 Conclusion and Further Work
We showed that we can increase the fact extraction per-
formance by searching facts in different formats and
structures of HTML documents. Furthermore, we intro-
duced an algorithm that can learn a trust value for those
structures in a self supervised manner. We are able to
assign a trust value to the extracted facts based on a
source trust and the trust for the extraction structures.
Further work needs to be done especially:

1. Determining how well the trust value indicates for
the end user the reliability of the automatic extrac-
tion.

2. Finding further criteria to calculate the source trust
more accurately for the extraction process.

3. Investigating in further domain independent for-
mats and structures that are used to represent facts
on websites.

4. Automate identification and extraction of entities
(extending the work of Vercoustre et al. [5] on en-
tity ranking from Wikipedia).

Figure 4: Evaluation of the WebKnox system against
the baseline across six concepts.

References
[1] Michele Banko, Micheal J. Cafarella, Stephen Soderland,

Matt Broadhead and Oren Etzioni. Open Information
Extraction from the Web. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence,
pages 2670–2676, 2007.

[2] Chia-Hui Chang, Mohammed Kayed, Mohed R. Girgis
and Khaled F. Shaalan. A Survey of Web Information
Extraction Systems. IEEE Transactions on Knowledge
and Data Engineering, Volume 18, Number 10, pages
1411–1428, 2006.

[3] William W. Cohen, Matthew Hurst and Lee S. Jensen. A
flexible learning system for wrapping tables and lists in
HTML documents. In Proceedings of the 11th Interna-
tional Conference on World Wide Web, pages 232–241.
ACM, 2002.

[4] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley
Kok, Ana-Maria Popescu, Tal Shaked, Stephen Soder-
land, Daniel S. Weld and Alexander Yates. Web-scale
information extraction in knowitall: (preliminary results).
In WWW ’04: Proceedings of the 13th International
Conference on World Wide Web, pages 100–110. ACM,
2004.

[5] Anne-Marie Vercoustre, James A. Thom and Jovan Pe-
hcevski. Entity ranking in Wikipedia. In SAC ’08:
Proceedings of the 2008 ACM symposium on Applied
computing, pages 1101–1106. ACM, 2008.

[6] Alexander Yates. Information Extraction from the Web:
Techniques and Applications. Ph.D. thesis, University of
Washington, Computer Science and Engineering, 2007.

[7] Shubin Zhao and Jonathan Betz. Corroborate and Learn
Facts from the Web. In KDD ’07: Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge
discovery and data mining, pages 995–1003. ACM, 2007.


